Novinky ze světa AI, BI a chatbotů
Asociace za lepší ICT řešení přináší pravidelné shrnutí zajímavých článků z odborného tisku a specializovaných webů ze čtvrtého čtvrtletí roku 2021 z oblasti AI, BI a chatbotů.
Jak se mění business intelligence?
Jaké trendy budou BI ovlivňovat v následujících letech? Prvním trendem je AI a ML. BI vylepšená o AI má potenciál změnit průměrného firemního uživatele v řadového datového vědce. Druhým trendem je přijetí cloudu. Výhody cloudového řešení BI zahrnují přístupnost pro vzdálené uživatele, škálovatelnost, pružnost a rychlost nasazení. Třetím trendem je pokrok zpracování přirozeného jazyka. To umožňuje firmám rozšířit využití BI do dalších procesů svého fungování a využívat nástroje hlubším způsobem. Čtvrtým trendem je to, že BI se stává součástí ERP a CRM systémů. Výhoda spočívá v tom, že se BI vyvíjí z odděleného nepropojeného procesu do podoby integrální součásti firemních pracovních toků. Pátým trendem jsou nové způsoby prezentace informací prostřednictvím vyprávění. Pomocí designu informací se snaží dodavatelé BI zjednodušit své prezentace způsobem, který uživatele provede konkrétním problémem či situací, a kromě prezentace základních dat také nabízí doporučení co dělat. Šestým trendem je BI pro provozní účely. Provozní BI používá data z různých zdrojů včetně chování spotřebitelů a narušení dodavatelského řetězce a nashromážděná data následně analyzuje. Takový systém pak dokáže nabízet doporučení pro rychlá rozhodnutí. Sedmým trendem je to, že úspěšné řešení BI i nadále vyžaduje přípravné práce.
Jakou roli hrají chatboti v zákaznickém servisu?
Díky zpracování přirozeného jazyka (NLP) se chatboti stávají zdatnými v porozumění požadavkům uživatelů vysloveným v běžném, konverzačním jazyce. Rostoucí popularita chatbotů s umělou inteligencí a zpracováním řeči je v mnoha ohledech pouze předzvěstí nadcházejícího rozšíření hlasových botů v oblasti zákaznických služeb. Obě tato technologie chtějí zapojit zákazníky do dynamických a vysoce personalizovaných konverzací kolem získávání odpovědí na jejich otázky. Chatbot komunikuje prostřednictvím zpráv, zatímco hlasový bot se zapojuje čistě hlasem. Hlasoví boti musí nejen rozumět požadavkům zákazníků, ale musí být také schopni rozeznat záměr otázky. Tyto boti navíc musí mít přístup k informacím o zákazníkovi a být schopni syntetizovat hlasový požadavek, který se následně převede na text ke zpracování, aby mohli obratem poskytnout přesnou hlasovou odpověď.. Co se týče chatbotů, jejich implementace přináší určité investiční náklady. Tyto náklady však mohou být nižší v porovnání s náklady na mzdy v oblasti služeb zákazníkům, infrastrukturu a vzdělávání. Kromě implementace investičních nákladů jsou dodatečné náklady na chatboty poměrně nízké. Výhody chatbota jsou, že pracuje neustále, je schopný poskytnout okamžitou odezvu, může odpovídat ve více jazycích a jeho odpovědi jsou konzistentní. Nevýhodou jsou složitější dotazy zákazníků, na které chatbot není schopný odpovědět. Také ho mohou zneužít hackeři pro provádění svých útoků.
Jak otrávení dat poškozuje modely strojového učení?
Díky cloud computingu došlo k značnému navýšení strojového učení. Útočníci se snaží ovlivňovat a zkreslovat doporučení pro uživatele pomocí falešných účtů s cílem zvýšit nebo snížit hodnocení a sdílet či propagovat určité produkty nebo obsah. Algoritmická manipulace může být použita pro různé účely včetně dezinformací, phishingových podvodů nebo změny veřejného mínění. Útoky otrávením dat nebo otrávením modelu zahrnují znečištění tréninkových dat modelu strojového učení. To ovlivňuje schopnost modelu poskytovat správné odpovědi. Útočníci také mohou odvodit potencionálně důležité informace, zamaskovat svůj vstup za účelem oklamání modelu, aby neudělal správnou klasifikaci nebo mohou vytvořit reverzní inženýrství modelu za účelem jeho replikace a lokální analýzy. Rozdíl mezi útokem, který má způsobit vadnou předpověď nebo klasifikaci jako výstup modelu a útokem otrávením je vytrvalost. Při otrávení je cílem útočníka zajistit, aby se jeho vstupy akceptovaly jako tréninková data a může trvat týdny, než útočník dosáhne otrávení dat. Otrávení dat lze dosáhnout ve scénáři černé skříňky vůči klasifikátorům nebo ve scénáři bílé skříňky, kde útočníci získají přístup k modelu a jeho privátním tréninkovým datům. Reálnými příklady jsou útoky na spamové filtry používané poskytovateli e-mailových služeb. Není snadné najít řešení, jak těmto útokům čelit. Náprava dopadu otrávení může vyžadovat časově náročné zpětné analýzy vstupů pro dotčenou třídu, aby se identifikovaly a odstranily všechny škodlivé vzorky dat. Po útoku je nutné opětovné vytrénování modelu s dobrými daty.
Články a rešerše AI, BI a chatbot najdete ZDE.
Katalog SW robotů a automatizace lze nalézt ZDE.
Asociace za lepší ICT řešení, o.p.s.
Husinecká 903/10
13000 Praha 3
IČ: 016 74 846
www.lepsi-reseni.cz
office@lepsi-reseni.cz
(+420) 226 259 729